Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein
نویسندگان
چکیده
The Kar3 protein (Kar3p), a protein related to kinesin heavy chain, and the Cik1 protein (Cik1p) appear to participate in the same cellular processes in S. cerevisiae. Phenotypic analysis of mutants indicates that both CIK1 and KAR3 participate in spindle formation and karyogamy. In addition, the expression of both genes is induced by pheromone treatment. In vegetatively growing cells, both Cik1::beta-gal and Kar3::beta-gal fusions localize to the spindle pole body (SPB), and after pheromone treatment both fusion proteins localize to the spindle pole body and cytoplasmic microtubules. The dependence of Cik1p and Kar3p localization upon one another was investigated by indirect immunofluorescence of fusion proteins in pheromone-treated cells. The Cik1p::beta-gal fusion does not localize to the SPB or microtubules in a kar3 delta strain, and the Kar3p::beta-gal fusion protein does not localize to microtubule-associated structures in a cik1 delta strain. Thus, these proteins appear to be interdependent for localization to the SPB and microtubules. Analysis by both the two-hybrid system and co-immunoprecipitation experiments indicates that Cik1p and kar3p interact, suggesting that they are part of the same protein complex. These data indicate that interaction between a putative kinesin heavy chain-related protein and another protein can determine the localization of motor activity and thereby affect the functional specificity of the motor complex.
منابع مشابه
Localization of the Kar3 Kinesin Heavy Chain-related Protein Requires the Cikl Interacting Protein
The Kar3 protein (Kar3p), a protein related to kinesin heavy chain, and the Cikl protein (Ciklp) appear to participate in the same cellular processes in S. cerevisiae. Phenotypic analysis of mutants indicates that both CIK1 and KAR3 participate in spindle formation and karyogamy. In addition, the expression of both genes is induced by pheromone treatment. In vegetatively growing ceils, both Cik...
متن کاملThe Kar3-interacting protein Cik1p plays a critical role in passage through meiosis I in Saccharomyces cerevisiae.
Meiosis I in Saccharomyces cerevisiae is dependent upon the motor protein Kar3. Absence of Kar3p in meiosis results in an arrest in prophase I. Cik1p and Vik1p are kinesin-associated proteins known to modulate the function of Kar3p in the microtubule-dependent processes of karyogamy and mitosis. Experiments were performed to determine whether Cik1p and Vik1p are also important for the function ...
متن کاملKar3 interaction with Cik1 alters motor structure and function.
Kar3, a kinesin-14 motor of Saccharomyces cerevisiae required for mitosis and karyogamy, reportedly interacts with Cik1, a nonmotor protein, via its central, predicted coiled coil. Despite this, neither Kar3 nor Cik1 homodimers have been observed in vivo. Here we show that Kar3 is a dimer in vitro by analytical ultracentrifugation. The motor domains appear as paired particles by rotary-shadow e...
متن کاملCommon mechanistic themes for the powerstroke of kinesin-14 motors.
Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or ...
متن کاملCik1 Targets the Minus-End Kinesin Depolymerase Kar3 to Microtubule Plus Ends
Kar3, a Saccharomyces cerevisiae Kinesin-14, is essential for karyogamy and meiosis I but also has specific functions during vegetative growth. For its various roles, Kar3 forms a heterodimer with either Cik1 or Vik1, both of which are noncatalytic polypeptides. Here, we present the first biochemical characterization of Kar3Cik1, the kinesin motor that is essential for karyogamy. Kar3Cik1 depol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 124 شماره
صفحات -
تاریخ انتشار 1994